Search results for "Directed Molecular Evolution"
showing 9 items of 9 documents
Nucleoside Analogue Mutagenesis of a Single-Stranded DNA Virus: Evolution and Resistance
2012
ABSTRACT It has been well established that chemical mutagenesis has adverse fitness effects in RNA viruses, often leading to population extinction. This is mainly a consequence of the high RNA virus spontaneous mutation rates, which situate them close to the extinction threshold. Single-stranded DNA viruses are the fastest-mutating DNA-based systems, with per-nucleotide mutation rates close to those of some RNA viruses, but chemical mutagenesis has been much less studied in this type of viruses. Here, we serially passaged bacteriophage ϕX174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU). We found that 5-FU was unable to trigger population extinction for the range of conce…
Metabolic Networks of Sodalis glossinidius: A Systems Biology Approach to Reductive Evolution
2012
BackgroundGenome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius.ResultsThe functiona…
Effect of population patchiness and migration rates on the adaptation and divergence of vesicular stomatitis virus quasispecies populations
1999
The effect of migration among different isolated virus quasispecies populations on their adaptation and diversity was analysed through experimental evolution. Anin vitrocell system was employed to simulate migration of vesicular stomatitis virus between isolated homogeneous host cell populations. The results clearly demonstrated a positive correlation between the migration rate and the magnitude of the mean fitness reached by the virus quasispecies populations. The results also showed, although less clearly, that fitness differences among quasispecies decreased with the magnitude of migration. These results are in close agreement with predictions of standard population genetics theory. Thes…
Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells
2014
Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53-/- MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53-/- cells but not in isogenic p53+/+ cells, indicating gene-specifi…
Molecular dissection of human Argonaute proteins by DNA shuffling.
2013
A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1-Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrid…
Microbial technologies for the discovery of novel bioactive metabolites
2002
Soil microbes represent an important source of biologically active compounds. These molecules present original and unexpected structure and are selective inhibitors of their molecular targets. At Biosearch Italia, discovery of new bioactive molecules is mostly carried out through the exploitation of a proprietary strain collection of over 50000 strains, mostly unusual genera of actinomycetes and uncommon filamentous fungi. A critical element in a drug discovery based on microbial extracts is the isolation of unexploited groups of microorganisms that are at the same time good producers of secondary metabolites. Molecular genetics can assist in these efforts. We will review the development an…
Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas
2017
Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the …
Fitness Trade-Offs Determine the Role of the Molecular Chaperonin GroEL in Buffering Mutations
2015
Molecular chaperones fold many proteins and their mutated versions in a cell and can sometimes buffer the phenotypic effect of mutations that affect protein folding. Unanswered questions about this buffering include the nature of its mechanism, its influence on the genetic variation of a population, the fitness trade-offs constraining this mechanism, and its role in expediting evolution. Answering these questions is fundamental to understand the contribution of buffering to increase genetic variation and ecological diversification. Here, we performed experimental evolution, genome resequencing, and computational analyses to determine the trade-offs and evolutionary trajectories of Escherich…
Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae
2014
[EN] Biological systems remain robust against certain genetic and environmental challenges. Robustness allows the exploration of ecological adaptations. It is unclear what factors contribute to increasing robustness. Gene duplication has been considered to increase genetic robustness through functional redundancy, accelerating the evolution of novel functions. However, recent findings have questioned the link between duplication and robustness. In particular, it remains elusive whether ancient duplicates still bear potential for innovation through preserved redundancy and robustness. Here we have investigated this question by evolving the yeast Saccharomyces cerevisiae for 2200 generations …