Search results for "Directed Molecular Evolution"

showing 9 items of 9 documents

Nucleoside Analogue Mutagenesis of a Single-Stranded DNA Virus: Evolution and Resistance

2012

ABSTRACT It has been well established that chemical mutagenesis has adverse fitness effects in RNA viruses, often leading to population extinction. This is mainly a consequence of the high RNA virus spontaneous mutation rates, which situate them close to the extinction threshold. Single-stranded DNA viruses are the fastest-mutating DNA-based systems, with per-nucleotide mutation rates close to those of some RNA viruses, but chemical mutagenesis has been much less studied in this type of viruses. Here, we serially passaged bacteriophage ϕX174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU). We found that 5-FU was unable to trigger population extinction for the range of conce…

Mutation rateGenes ViralImmunologyBiologyMicrobiology03 medical and health scienceschemistry.chemical_compoundTranscription (biology)VirologyDrug Resistance ViralGenePolymerase030304 developmental biologyGenetics0303 health sciences030302 biochemistry & molecular biologyRNARNA virusDNAbiology.organism_classificationVirology3. Good healthGenetic Diversity and EvolutionchemistryInsect ScienceSingle Stranded DNA VirusMutagenesis Site-Directedbiology.proteinFluorouracilDirected Molecular EvolutionBacteriophage phi X 174DNAJournal of Virology
researchProduct

Metabolic Networks of Sodalis glossinidius: A Systems Biology Approach to Reductive Evolution

2012

BackgroundGenome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius.ResultsThe functiona…

Genome evolutionTsetse FliesSystems biologyScienceGenomeMicrobiologyModels BiologicalAnimals Genetically ModifiedEvolution MolecularEnterobacteriaceaeEscherichia coliAnimalsComputer SimulationBiologyGeneticsEvolutionary BiologyMultidisciplinarybiologyHost (biology)Human evolutionary geneticsBacterial genomicsSystems BiologyQSodalis glossinidiusEnterobacteriaceae InfectionsRComputational BiologyGenomicsbiology.organism_classificationPhenotypePhenotypeEvolutionary biologyHost-Pathogen InteractionsMedicineDirected Molecular EvolutionGenome BacterialMetabolic Networks and PathwaysResearch Article
researchProduct

Effect of population patchiness and migration rates on the adaptation and divergence of vesicular stomatitis virus quasispecies populations

1999

The effect of migration among different isolated virus quasispecies populations on their adaptation and diversity was analysed through experimental evolution. Anin vitrocell system was employed to simulate migration of vesicular stomatitis virus between isolated homogeneous host cell populations. The results clearly demonstrated a positive correlation between the migration rate and the magnitude of the mean fitness reached by the virus quasispecies populations. The results also showed, although less clearly, that fitness differences among quasispecies decreased with the magnitude of migration. These results are in close agreement with predictions of standard population genetics theory. Thes…

PopulationAdaptation BiologicalViral quasispeciesBiologyVesicular stomatitis Indiana virusVirusCell LineDivergenceViral Envelope ProteinsCricetinaeVirologyTumor Cells CulturedAnimalsHumanseducationGeneticseducation.field_of_studyExperimental evolutionMembrane GlycoproteinsModels GeneticGenetic Variationbiology.organism_classificationVirologyHomogeneousVesicular stomatitis virusDirected Molecular EvolutionAdaptationJournal of General Virology
researchProduct

Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells

2014

Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53-/- MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53-/- cells but not in isogenic p53+/+ cells, indicating gene-specifi…

Cancer TreatmentVirus OncolíticosProtein EngineeringMiceMedicine and Health SciencesMacromolecular EngineeringMice KnockoutOncolytic VirotherapyMultidisciplinaryQProteína p53 Supresora de TumorRNeoplasias de la Mama3. Good healthOncolytic VirusesOncologyVesicular stomatitis virusColonic NeoplasmsMedicineFemaleVesicular StomatitisResearch ArticleBiotechnologyDirected EvolutionEvolutionary ProcessesTumor suppressor geneScienceBioengineeringBreast NeoplasmsBiologyMicrobiologyViral EvolutionVirusVesicular StomatitisVirologyCell Line TumorGeneticsAnimalsHumansEvolutionary BiologyNeoplasias del ColonBiology and Life SciencesRNA virusVesiculovirusbiology.organism_classificationVirologyOrganismal EvolutionOncolytic virusAnimal Models of InfectionArtificial SelectionSynthetic BioengineeringViruses and CancerCell cultureMicrobial EvolutionCancer cellCancer researchDirected Molecular EvolutionTumor Suppressor Protein p53
researchProduct

Molecular dissection of human Argonaute proteins by DNA shuffling.

2013

A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1-Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrid…

Models MolecularDNA ComplementaryProtein ConformationRecombinant Fusion ProteinsMolecular Sequence DataDNA RecombinantPiwi-interacting RNASequence alignmentComputational biologyBiologyStructural BiologyMolecular evolutionRNA interferenceConsensus SequenceConsensus sequenceHumansAmino Acid SequenceEukaryotic Initiation FactorsRNA Processing Post-TranscriptionalRNA Small InterferingMolecular BiologyGene LibraryGeneticsSequence Homology Amino AcidRNADNA ShufflingArgonauteDNA shufflingProtein Structure TertiaryMicroRNAsPhenotypeArgonaute ProteinsRNA InterferenceDirected Molecular EvolutionSequence AlignmentNature structuralmolecular biology
researchProduct

Microbial technologies for the discovery of novel bioactive metabolites

2002

Soil microbes represent an important source of biologically active compounds. These molecules present original and unexpected structure and are selective inhibitors of their molecular targets. At Biosearch Italia, discovery of new bioactive molecules is mostly carried out through the exploitation of a proprietary strain collection of over 50000 strains, mostly unusual genera of actinomycetes and uncommon filamentous fungi. A critical element in a drug discovery based on microbial extracts is the isolation of unexploited groups of microorganisms that are at the same time good producers of secondary metabolites. Molecular genetics can assist in these efforts. We will review the development an…

medicine.medical_specialtyGenetic VectorsBioengineeringComputational biologyBiologySettore BIO/19 - Microbiologia Generalemedicine.disease_causeApplied Microbiology and BiotechnologyStreptomycesGenomePolymerase Chain ReactionMicrobiologySpecies SpecificityMolecular geneticsmedicineGeneEscherichia coliSoil MicrobiologyDrug discoveryGeneral MedicineGene Expression Regulation Bacterialbiology.organism_classificationIsolation (microbiology)ActinobacteriaGenetic VectorDirected Molecular EvolutionSoil microbiologyActinobacteria; Directed Molecular Evolution; Genetic Vectors; Polymerase Chain Reaction; Soil Microbiology; Species Specificity; Gene Expression Regulation BacterialBiotechnology
researchProduct

Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas

2017

Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the …

0106 biological sciences0301 basic medicinehiilidioksidiEpigenomicsAdaptation Biological01 natural sciencestolerance (physical)Epigenesis GeneticEpigenomicssietokyky2. Zero hungerGeneticsExperimental evolutionepigeneettinen periytyminenSalt Tolerancegreen algaeAdaptation PhysiologicalHistoneDNA methylationepigenetic inheritancephosphate starvationBiologyEnvironment010603 evolutionary biologysuolapitoisuus03 medical and health sciencesviherlevätGenetic variationGeneticsEpigeneticssalt contentexperimental evolutionravinnepitoisuusMolecular BiologyGeneEcology Evolution Behavior and Systematicssalt tolerancefosfaatitta1183ChlamydomonasGenetic Variationadaptive walkcarbon dioxideDNA Methylation030104 developmental biologyepigenetic mutationMutationbiology.proteinta1181methylationAdaptationDirected Molecular EvolutionChlamydomonas reinhardtii
researchProduct

Fitness Trade-Offs Determine the Role of the Molecular Chaperonin GroEL in Buffering Mutations

2015

Molecular chaperones fold many proteins and their mutated versions in a cell and can sometimes buffer the phenotypic effect of mutations that affect protein folding. Unanswered questions about this buffering include the nature of its mechanism, its influence on the genetic variation of a population, the fitness trade-offs constraining this mechanism, and its role in expediting evolution. Answering these questions is fundamental to understand the contribution of buffering to increase genetic variation and ecological diversification. Here, we performed experimental evolution, genome resequencing, and computational analyses to determine the trade-offs and evolutionary trajectories of Escherich…

PopulationGenetic FitnessBiologyGroELCell LineChaperonin10127 Institute of Evolutionary Biology and Environmental StudiesGenetic drift1311 Geneticsmutational bufferingOperonGenetic variationGenetics1312 Molecular BiologyEscherichia coliexperimental evolutioneducationMolecular BiologyDiscoveriesEcology Evolution Behavior and Systematics2. Zero hungerGeneticseducation.field_of_studyExperimental evolutionGenetic DriftChaperonin 60Gene Expression Regulation BacterialGroEL1105 Ecology Evolution Behavior and SystematicsGenes BacterialMutation570 Life sciences; biology590 Animals (Zoology)bacteriaProtein foldingGenetic FitnessDirected Molecular EvolutionSubcellular Fractions
researchProduct

Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae

2014

[EN] Biological systems remain robust against certain genetic and environmental challenges. Robustness allows the exploration of ecological adaptations. It is unclear what factors contribute to increasing robustness. Gene duplication has been considered to increase genetic robustness through functional redundancy, accelerating the evolution of novel functions. However, recent findings have questioned the link between duplication and robustness. In particular, it remains elusive whether ancient duplicates still bear potential for innovation through preserved redundancy and robustness. Here we have investigated this question by evolving the yeast Saccharomyces cerevisiae for 2200 generations …

DNA Mutational AnalysisGenes FungalSaccharomyces cerevisiaeSaccharomyces cerevisiaeBiologyPolymorphism Single NucleotideGenome03 medical and health sciences0302 clinical medicineINDEL MutationStress PhysiologicalGene DuplicationGene duplicationDNA Mutational AnalysisGeneticsBiologyGeneGenetics (clinical)030304 developmental biologyGenetics0303 health sciencesModels GeneticResearchFungal geneticsRobustness (evolution)biology.organism_classificationAdaptation PhysiologicalPhenotypeEvolutionary biologyMutationChromosomes FungalDirected Molecular EvolutionGenome FungalAlgorithms030217 neurology & neurosurgeryGenome Research
researchProduct